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We prove that for a homogeneous linear partial differential operator A of order
k � 2 and an integrable map f taking values in the essential range of that operator,
there exists a function u of special bounded variation satisfying

Au(x) = f(x) almost everywhere.

This extends a result of G. Alberti for gradients on RN . In particular, for
0 � m < N , it is shown that every integrable m-vector field is the absolutely
continuous part of the boundary of a normal (m + 1)-current.
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1. Introduction

Let Ω be an open subset of RN . We consider a general constant-coefficient system of
linear partial differential equations acting on functions u : Ω → E, that is, a partial
differential operator of the form

Au =
∑
|α|=k

Aα∂αu, Aα ∈ Hom(E,F ), (1.1)

where E, F are finite-dimensional R-spaces. Here α = (α1, . . . , αN ) ∈ (N0)N is
a multi-index with modulus |α| = α1 + · · · + αN and ∂α = ∂α1

1 ◦ · · · ◦ ∂αN

N is the
composition of distributional directional partial derivatives. The Fourier transform
establishes a one-to-one correspondence between homogeneous operators and their
associated principal symbol A : RN → Hom(E, F ), which in this context is given
by the k-homogeneous tensor-valued polynomial

A
k(ξ) =

∑
|α|=k

Aαξα, ξα = ξα1
1 · · · · · ξαN

N , ξ ∈ RN .

Suppose now that u ∈ D ′(Ω;E) is a distribution such that Au is a zero-order distri-
bution, i.e. represented by an F -valued Radon measure. Let g : Ω → F be the polar
vector of Au. If, additionally, A is a constant-rank operator (see e.g. [8, 18, 19]), the
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2 A. Arroyo-Rabasa

De Philippis–Rindler theorem [11, Theorem 1.1] establishes that g is constrained to
take values on the image cone at singular points. More precisely, if U ⊂ Ω is a LN -
negligible Borel set, where LN stands for the N -dimensional Lebesgue measure,
then

g(x) ∈ IA :=
⋃

|ζ|=1

Im A
k(ζ) |Au| almost everywhere on U.

This property extends a classical result of Alberti [3], which says that if the distri-
butional gradient Du of a map u : RN → RM is represented by an RM×N -valued
Radon measure, then its polar vector must take values in the cone of rank-one
matrices on LN -negligible sets: if LN (U) = 0, then

rank
Du

|Du| (x) = 1 |Du| almost everywhere in U.

In contrast with this restriction over the polar of Du at singular points, Alberti
showed [1, Theorem 3] that the absolutely continuous part of a gradient measure
is fully unconstrained: if f ∈ L1(RN ;RM×N ), then there exists u ∈ BV (RN ;RM )
such that1

Du = f LN + [u] ⊗ νu HN−1 Ju, [u] := u+−u− , (1.2)

and

‖u‖BV � C

∫
Ω

|f | .

Alberti (see [1, 2]) also established other Lusin-type properties for gradients of
arbitrary order. He showed that if f : Ω → RNk

sym is continuous, then for any positive
measure λ on Ω and any smallness constant ε > 0, one may find a compact set
K ⊂ Ω and a function u ∈ Ck(Ω) such that

f(x) = Dku(x) ∀x ∈ K , λ(Ω \ K) � ελ(Ω) ,

and satisfying L∞-estimates for Dku in terms of f . Building on these ideas, Francos
[16] (see also [12]) showed that for any given Borel f : Ω → RNk

sym and σ > 0, there
exists a function g ∈ Ck−1(Ω), k-times differentiable almost everywhere, satisfying

f(x) = Dkg(x) a.e. on Ω and ‖Dkg‖L∞(Ω) � σ.

Driven by applications to higher-order variational problems where derivatives give
rise to surface energies, Fonseca et al. [15, Theorem 1.4] established an analogue of
(1.2) for the Hessian operator. More precisely, they showed that if f : Ω → RN×N

sym ,
then there exists u ∈ W 1,1(Ω), with ∇u ∈ BV (Ω;RN ), satisfying

D2u = f LN + [∇u] ⊗ νu HN−1 J∇u and ‖u‖BH(Ω) � C‖f‖L1 .

Unlike the Lusin-type properties for higher-order gradients by Francos, this gener-
alization to second-order derivatives is not followed by a straightforward iteration

1Alberti’s result is written originally for functions f : Ω → R. Applying it on each component
yields the general case for RM -valued vector fields.
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A Lebesgue–Lusin property 3

of Alberti’s property (1.2). The reason for this drawback is the presence of the
symmetry constraints of higher-order curl-free fields.

In light of this digression, the recent developments in the study of fine properties
in BV A spaces (see e.g. [4, 6, 9, 10, 13]), and the De Philippis–Rindler theorem,
we are led to ask the following natural question: is the absolutely continuous part of
an A-gradient measure fully unconstrained? Our main results (Theorems 2.1 and
2.2) establish that, at least when A is an operator of order k � 2, this is indeed the
case; regardless of A satisfying the constant-rank condition. Our proof hinges on
Proposition 2.4, where we show the previous question is equivalent to the validity
of (1.2) for Hessians of arbitrary order. This is the main reason why our result is
restricted to the case k = 1, 2.

2. Notation and results

In all that follows, Ω will denote an open subset of RN . We will write LN to denote
the N dimensional Lebesgue measure and HN−1 to denote the (N − 1)-dimensional
Hausdorff outer measure on RN . The space BV (Ω;E), of E-valued vector fields
with bounded variation on Ω, consists of all integrable maps u : Ω → E whose
distributional gradient can be represented by a finite Radon measure taking values
on E ⊗ RN . For such functions, we shall write ∇u ∈ L1(Ω;E ⊗ RN ) to denote the
absolutely continuous part of Du with respect to LN . It is well known (see e.g. [5])
that such maps are Lebesgue continuous outside of a countably HN−1 rectifiable
set Ju ⊂ Ω, with orientation normal νu, called the jump set of u. Moreover, the
map u has Lebesgue one-sided limits u+(x), u−(x) for HN−1 almost every x ∈ Ju

with respect to the normal direction νu(x), and their difference

[u](x) := u+(x) − u−(x), x ∈ Ju,

defines a HN−1-integrable map on Ju. By the Radon–Nikodym theorem, the gra-
dient of a map u ∈ BV (Ω;E) can be decomposed as Du = ∇u LN + Dsu where
Dsu ⊥ LN . The singular part Dsu can be further decomposed into mutually
singular measures as

Dsu = Dcu + Dju,

where (the Cantor part) Dcu is a measure vanishing on countable unions of HN−1-
finite Borel sets, and the so-called jump part

Dju := [u] ⊗ νu HN−1 Ju

is the restriction of Du to the set of jump discontinuities of u. The subspace
SBV (Ω;E) of E-valued functions of special bounded variation consists of all
functions u ∈ BV (Ω;E) with rectifiable singular gradient, i.e.

Du = ∇u LN + [u] ⊗ νu HN−1 Ju .

We also define

FA := {Au(x) : x ∈ Ω, u ∈ D(RN ;E) }F
, (2.1)

the essential range of the operator A. It is easy to see that every distribution Au
takes values in this space, which is the smallest space with this property.
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4 A. Arroyo-Rabasa

With these considerations in mind, we can state our main results. We begin by
stating the result for first-order operators:

Theorem 2.1. Let A be a first-order operator as in (1.1) and let f : Ω → FA be
integrable. Then there exists a map u ∈ SBV (Ω;E) satisfying

Au = f LN + A
1(νu)[u]HN−1 Ju (2.2)

and ∫
Ω

(|u| + |∇u|) dx +
∫

Ju

|[u]|dHN−1 � C

∫
Ω

|f |dx

for some constant C that only depends on A.

A similar statement holds for second-order operators:

Theorem 2.2. Let A be a second-order operator as in (1.1) and let f : Ω → FA be
integrable. Then there exists a map u ∈ W 1,1(Ω;E), with ∇u ∈ SBV (Ω;E ⊗ RN ),
satisfying

Au = f LN + A
2(ν∇u)( [∇u]ν∇u )HN−1 J∇u (2.3)

and ∫
Ω

(|u| + |∇u| + |∇2u|) dx +
∫

J∇u

|[∇u]|HN−1 � C

∫
Ω

|f |dx

where C is a constant that only depends on A.

Remark 2.3. The essential range FA defined in (2.1) coincides with the space
span

{
A

k(ξ)[e] : ξ ∈ RN , e ∈ E
}

= span {IA} of all A-gradient amplitudes in
Fourier space (for a proof see [7, Section 2.5]). For example, if A = D2 is the
Hessian, then FD2 = span

{
ξ ⊗ ξ : ξ ∈ RN

}
=: RN×N

sym .

Theorems 2.1 and 2.2 will follow directly from the equivalence result below
(Proposition 2.4), Alberti’s original result for gradients (in the first-order case)
and its analogue for Hessians by Fonseca, Leoni and Paroni (in the second-order
case). Before stating Proposition 2.4, it will be convenient to introduce some basic
notation for symmetric tensors and gradients of higher order.

Symmetric tensors

Let r � 0 be an integer. For a vector v ∈ RN , we write v⊗r

to denote the tensor that
results by taking the tensorial product of v with itself r-times (with the convention
v⊗0

= 1). We consider the subspace

RNr

sym = span
{

v⊗r

: v ∈ RN
}

consisting of all symmetric rth order tensors on RN . In the following, we shall con-
sider a contraction 〈 �, �〉r : (E ⊗ RNr

sym × RN ) → E associated with the canonical
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inner product ( �, �) on ⊗rRN as

〈e ⊗ V, v〉r = e(V, v⊗r

)for all e ∈ E, V ∈ RNr

sym and v ∈ RN .

Notice that under our convention for r = 0, we have 〈e, �〉0 = e.

Jump densities for higher-order BV k-spaces

Let k � 2 be an integer. We define the space BV k(Ω) as the space of inte-
grable functions u : Ω → R whose distributional kth order gradient Dku can be
represented by a Radon measure taking values on RNk

sym; the spaces BV k
loc(Ω),

BV k(Ω;E) are defined accordingly with this definition in the obvious manner.
By classical elliptic regularity theory, there is a natural continuous embedding
BV k

loc(Ω;E) ↪→ W k−1,1
loc (Ω;E). Therefore, the distributional gradient Dk−1u of a

map u in BV k
loc(Ω;E) can be represented by an integrable map ∇k−1u : Ω →

E ⊗ RNk−1

sym , that is,

Dk−1u = ∇k−1u LN .

Moreover, in this case, the tensor field w := ∇k−1u has bounded variation, the
jump set Jw of w is a countably HN−1 rectifiable set where w has approximate
one-sided limits [w] ∈ E ⊗ RNk−1

sym , with respect to a fixed orientation νw of Jw, and
the difference map [w] is integrable on Jw. Since Dku is a symmetric-valued tensor
measure, it follows that the HN−1 density of the jump part of Dw = Dku is of the
form

[w] ⊗ νw = λw ⊗ (νw)⊗
k

for some HN−1-integrable map λw : Jw → E. Using that |νw|2 = 1, we can charac-
terize the E-coordinate coefficient λw directly in terms of [w] and the contraction
pairing defined above. Indeed, 〈[w], νw〉k−1 · |νw|2 = 〈[w] ⊗ νw, νw〉k = λw|νω|2k =
λw. In particular, it follows that

[w] = λw ⊗ (νw)⊗
k−1

HN−1 almost everywhere on Jw. (2.4)

For consistency, we set ∇0u := u so that, when k = 1, we simply get

[w] = λw = [u]HN−1 almost everywhere on Ju.

With these considerations in mind, we are now in the position to state the fol-
lowing equivalence between Lebesgue–Lusin properties for kth order gradients and
arbitrary homogeneous operators of order k:

Proposition 2.4. The following statements are equivalent:

(a) Let A be a kth order linear operator as in (1.1) and let f : Ω → FA be an
integrable map. Then there exists u ∈ BV k(Ω;E), satisfying

Au = f LN + A
k(νw)〈[w], νw〉k−1 HN−1 Jw ,
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6 A. Arroyo-Rabasa

where w := ∇k−1u. Moreover, w ∈ SBV (Ω;E ⊗ Rk−1
sym ) and

‖u‖W k−1,1(Ω) +
∫

Ω

|∇w|dx +
∫

Jw

|[w]|dHN−1 � C

∫
Ω

|f |dx

for some constant C depending on A.

(b) Let f : Ω → RNk

sym be an integrable map. Then there exists u ∈ BV k(Ω)
satisfying

Dku = f LN + [w] ⊗ νw HN−1 Jw,

where w := ∇k−1u. Moreover, w ∈ SBV (Ω;RNk−1

sym ) and

‖u‖W k−1,1(Ω) +
∫

Ω

|∇w|dx +
∫

Jw

|[w]|dHN−1 � C

∫
Ω

|f |dx

for some constant C depending on N and k.

Proof of Proposition 2.4. The implication (a) =⇒ (b) is straightforward from the
following observations. Firstly, the principal symbol of the kth order Hessian is given
by Dk(ξ) = ξ⊗

k

. Therefore, Dk has the form (1.1) with E = R and F = RNk

sym, by
setting Aα = Mα, where the family {Mα : |α| = k } is the canonical orthonormal
basis of RNk

sym. Hence, from (2.4) and (a) we conclude that u ∈ BV k(Ω) satisfies

Dku = f LN + [w] ⊗ νw HN−1 Jw,

with w = ∇k−1u ∈ SBV (Ω;RNk−1

sym ), satisfying

‖u‖W k−1,1(Ω) +
∫

Ω

|∇w|dx +
∫

Jw

|[w]| � C(Dk)
∫

Ω

|f |dx.

This proves the first implication since Dk implicitly fixes the spatial dimension N .
We now show (b) =⇒ (a). The first step is to use the alternative jet expression

A[Dku] = Au, where A : E ⊗ RNk

sym → FA is the (unique) linear map satisfying

A[e ⊗ ξ⊗
k

] = A
k(ξ)[e] for all e ∈ E . (2.5)

The existence of A is a direct consequence of the universal property of the tensor
product and the k-linearity of the principal symbol on the frequency variable ξ. For
the sake of simplicity, let us write Ek = E ⊗ RNk

sym. By construction, we have

Im A = span
{

A
k(ξ)[e] : ξ ∈ RN , e ∈ E

}
= FA.

Let us consider the Moore–Penrose quasi-inverse A† associated with A. This is an
element of Hom(FA;Ek) satisfying the fundamental identity

A ◦ A†=1Im A = 1FA . (2.6)

In particular, by our assumption on f , A†f(x) is well-defined almost everywhere
on Ω and A†f ∈ L1(Ω;Ek). Now, we make use of the assumption (b) over each
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E-coordinate to find u ∈ BV k(Ω;E) satisfying

Dku = A†f LN + Djw ,

where w = ∇k−1u ∈ SBV (Ω;RNk

sym) satisfies the estimate

‖u‖W k−1,1(Ω) +
∫

Ω

|∇w|dx +
∫

Jw

|[w]|dHN−1 � C

∫
Ω

|A†f |dx (2.7)

for some constant C depending on N , k and dimFA. Here, as usual Djw = g̃ HN−1

Jw is the jump part of Dw. Notice that in this case g̃ = 1Jw
[w] ⊗ νw. Pre-composing

this expression with A, we get

Au = A[Dku] = A
[
A†f LN + g̃ HN−1

]
.

Since A is a linear map, we may pull in and distribute A into the densities that
belong to the sum of the right-hand side, hence concluding that

Au = A ◦ A†f LN + Ag̃ HN−1 = f LN + g HN−1,

where g = 1Jw
· A([w] ⊗ νw). In passing to the last equality in the formula above,

we have used the almost everywhere pointwise restriction f(x) ∈ FA. Now, we use
the fact that at jump points (cf. (2.4)), it holds

[w] = 〈[w], νw〉k−1 ⊗ (νw)⊗
k−1

.

From this we obtain that g = 1Jw
· A

k(νw)〈[w], νw〉k−1 as desired. Lastly, the bound
on the Sobolev norm and total variation of Dku follow from (2.7), the estimates

∫
|A†f |dx � ‖A†‖F→Ek

∫
|f |dx,

∫
|g|dHN−1 � ‖A‖Ek→F

∫
|[w]|dHN−1,

and the fact that ‖A†‖FA→Ek
= ‖A−1‖Im A→FA depends solely on A.2 This finishes

the proof. �

Proof of Theorems 2.1 and 2.2. The proof of Theorem 2.1 follows directly from the
validity of the Lusin property for gradients ([1, Theorem 3]), the previous proposi-
tion (with k = 1), and the equivalence in Remark 2.3. The proof of Theorem 2.2,
on the other hand, follows from the previous proposition (with k = 2) and [15,
Theorem 1.4]. �

2This equality of norms follows from (2.6), which implies that the restriction of A† to Im A is
the inverse of the isomorphism A : (ker A)⊥ → Im A.
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An application for normal currents

Let m be a non-negative integer. An m-dimensional current T on Ω is an element
of the continuous dual Dm(Ω) = Dm(Ω)∗, where

Dm(Ω) := C∞
c (Ω;∧mRN )

is the space of smooth and compactly supported m-forms on Ω. If m � 1, the
(distributional) boundary operator on currents is defined by duality through the
rule

∂T ∈ Dm−1(Ω) , ∂T (ϕ) = T (dϕ) whenever ϕ ∈ Dm−1(Ω) .

Here, d is the exterior derivative operator acting on Dm(Ω). The boundary operator
then maps Dm(Ω) into Dm−1(Ω). The mass of a current T ∈ Dm(Ω) is defined as

M(T ) = sup
{

T (ϕ) : ϕ ∈ Dm(Ω), sup
x∈Ω

|ϕ(x)| � 1
}

.

A current T is called normal if T is representable by a finite Radon measure
and either ∂T is representable by a finite Radon measure or m = 0. In particu-
lar, every normal k-current is a distribution represented by a measure taking values
on the space ∧mRN = (∧mRN )∗ of m-vectors. The space of normal m-dimensional
currents on Ω is denoted by Nm(Ω).

Given an element ξ ∈ RN ∼= ∧1RN , we write ξ∗ to denote the 1-covector

ξ∗(v) := ξ · v, v ∈ RN .

The interior multiplication operator �: ∧pRN × ∧qRN → ∧p−qRN is defined as the
adjoint of the exterior multiplication (see e.g. [14, Chapter 1.5]):

〈v�α, β〉 = 〈v, α ∧ β〉 v ∈ ∧pRN , α ∧q RN , β ∈ ∧p−qRN .

With this notation in mind, we get the following direct application of Theorem 2.1
for the boundary operator acting on normal currents:

Corollary 2.5. Let m ∈ [0, N) be an integer and let S : Ω → ∧mRN be an
integrable m-vector field. Then, there exists a normal current T ∈ Nm+1(Ω) ∩
SBV (Ω;∧m+1RN ) satisfying

∂T = S LN + [T ]�ν∗
T HN−1 JT

Moreover,

M(T ) + M(∂T ) � Cm,N‖S‖L1(Ω).

Remark 2.6. A similar result holds for integrable m-forms with m ∈ (0, N ].
More precisely, if ω ∈ L1(Ω;∧mRN ), then there exists an (m − 1)-form φ ∈
SBV (Ω;∧m−1RN ) satisfying (see also [17, Proposition 2.1])

dφ = ωLN + ν∗
φ ∧ [φ]HN−1 Jφ.

and ∫
Ω

|u|dx +
∫

Jφ

|[u]|dHN−1 � Cm,N‖ω‖L1(Ω).
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Proof. Since the symbol of the exterior derivative is precisely the exterior mul-
tiplication (i.e. dm(ξ)α = ξ∗ ∧ α), the symbol of the boundary operator ∂ on
(m + 1)-vectors is precisely (see e.g. [14, §4.1.7.])

∂m+1(ξ)e = −(e�ξ∗), ξ ∈ RN , e ∈ ∧m+1RN .

In particular, the boundary operator ∂ defines a constant-coefficient first-order
operator from Dm+1(Ω) to Dm(Ω). Since (cf. [14, §1.5.2])

Im ∂m+1(ξ) = ker ∂m(ξ) = span{v1 ∧ · · · ∧ vm | v1, . . . , vm ∈ ξ⊥},
it follows that ∧mRN = span{Im ∂m+1(ξ) : |ξ| = 1} = F∂ . We may thus apply
Theorem 1 to find T ∈ SBV (Ω;∧mRN ) satisfying the desired properties: the fact
that T ∈ Nm+1(Ω) follows directly from the fact that M(T ) = ‖T‖L1(Ω) and that
M(∂T ) � |DT |(Ω). �

Corollary 2.7. Let m ∈ [1, N) be an integer and let S : Ω → ∧mRN be an inte-
grable m-vector field. There exists a countably HN−1 rectifiable set J with (oriented)
normal ν, and a Borel (m + 1)-vector field g : J → ∧m+1RN satisfying

∂(S LN − g�ν∗ HN−1 J) = 0

and ∫
J

|g|HN−1 � C

∫
Ω

|S|dx.

Proof. It is sufficient to use the expression for ∂T in the corollary above and observe
that ∂(∂T ) = 0. �

The canonical isomorphism ι : RN → ∧1RN , identifying vector fields in RN with
1-vectors, induces an isometry between vector fields with bounded measure diver-
gence and normal 1-currents. In particular, an exciting and direct application of
the previous corollary is the following rectifiable completion for systems of vector
fields to systems of solenoidal measures.

Corollary 2.8. If N � 2, then every vector field �f ∈ L1(Ω;RN ) is the absolutely
continuous part of a solenoidal field measure up to a rectifiable measure. More
precisely, there exists a countably HN−1 rectifiable set Γ ⊂ Ω and a Borel vector
field �a : Γ → RN satisfying the differential constraint

div(�f LN + �a HN−1 Γ) = 0

and also the tangential constraint

�a(x) ∈ Tan(Γ, x) for HN−1 almost every x ∈ Γ.

Moreover, ∫
Γ

|�a|dHN−1 � C‖�f‖L1(Ω)

for a constant C that depends only on N .
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Proof. Applying the assertion of Corollary 2.7 (here we are using that N � 2) to
the integrable 1-vector field ι �f yields the existence of a countably HN−1 rectifiable
set Γ ⊂ Ω and an integrable 2-vector g : Γ → ∧2RN satisfying

∂(ι �f LN − g�ν∗ HN−1 Γ) = 0

and ∫
Γ

|g|HN−1 � C

∫
Ω

|f |dx. (2.8)

By the identification discussed before, we conclude that

div(�f LN + �a HN−1 Γ) = 0,

where �a := ι−1(−g�ν∗) : Γ → RN is integrable on Γ and satisfies the asserted
L1 bounds on Γ. To see the tangential properties of the �a, it suffices
to observe that �a(x) · ν(x) = 〈g(x)�ν(x)∗, ν(x)∗〉 = 〈g(x), ν(x)∗ ∧ ν(x)∗〉 = 0 for
HN−1 almost every x ∈ Γ (on Lebesgue points of g and ν). �
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